skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bello, Juan P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Embedding models that encode semantic information into low-dimensional vector representations are useful in various machine learning tasks with limited training data. However, these models are typically too large to support inference in small edge devices, which motivates training of smaller yet comparably predictive student embedding models through knowledge distillation (KD). While knowledge distillation traditionally uses the teacher’s original training dataset to train the student, we hypothesize that using a dataset similar to the student’s target domain allows for better compression and training efficiency for the said domain, at the cost of reduced generality across other (non-pertinent) domains. Hence, we introduce Specialized Embedding Approximation (SEA) to train a student featurizer to approximate the teacher’s embedding manifold for a given target domain. We demonstrate the feasibility of SEA in the context of acoustic event classification for urban noise monitoring and show that leveraging a dataset related to this target domain not only improves the baseline performance of the original embedding model but also yields competitive students with >1 order of magnitude lesser storage and activation memory. We further investigate the impact of using random and informed sampling techniques for dimensionality reduction in SEA. 
    more » « less